Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Water Res ; 233: 119783, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2268968

ABSTRACT

Organophosphate esters (OPEs) are a group of synthetic chemicals used in numerous consumer products such as plastics and furniture. The Coronavirus Disease 2019 (COVID-19) pandemic significantly slowed anthropogenic activities and reduced the emissions of pollutants. Meanwhile, the mismanagement of large quantities of disposable plastic facemasks intensified the problems of plastic pollution and leachable pollutants in coastal waters. In this study, the joint effects of the COVID-19 outbreak on the occurrence of 12 targeted OPEs in the waters of Laizhou Bay (LZB) were investigated. The results showed that the median total OPE concentrations were 725, 363, and 109 ng L-1 in the sewage treatment plant effluent, river water, and bay water in 2021, decreased significantly (p < 0.05) by 67%, 68%, and 70%, respectively, compared with those before the COVID-19 outbreak. The release potential of targeted OPEs from disposable surgical masks in the LZB area was ∼0.24 kg yr-1, which was insufficient to increase the OPE concentration in the LZB waters. The concentrations of most individual OPEs significantly decreased in LZB waters from 2019 to 2021, except for TBOEP and TNBP. Spatially, a lower concentration of OPEs was found in the Yellow River estuary area in 2021 compared with that before the COVID-19 pandemic due to the high content of suspended particulate matter in the YR. A higher total OPE concentration was observed along the northeastern coast of LZB, mainly owing to the construction of an artificial island since 2020. The ecological risks of the OPE mixture in LZB waters were lower than those before the COVID-19 outbreak. However, TCEP, TNBP, and BDP should receive continuous attention because of their potential ecological risks to aquatic organisms.


Subject(s)
COVID-19 , Environmental Pollutants , Flame Retardants , Humans , Pandemics , Bays , Environmental Monitoring/methods , Esters/analysis , Flame Retardants/analysis , COVID-19/epidemiology , Organophosphates/analysis , Water , Plastics , China/epidemiology
2.
Sci Total Environ ; 856(Pt 1): 158779, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2031677

ABSTRACT

In this study, brominated flame retardants (BFRs), phthalates, and organophosphate flame retardants (PFRs) were analyzed in indoor household dust collected during the COVID-19 related strict lockdown (April-July 2020) period. Floor dust samples were collected from 40 households in Jeddah, Saudi Arabia. The levels of most of the analyzed chemicals were visibly high and for certain chemicals multifold high in analyzed samples compared to earlier studies on indoor dust from Jeddah. Bis (2-ethylhexyl) phthalate (DEHP) was the primary chemical in these dust samples, with a median concentration of 769,500 ng/g of dust. Tris (2-butoxy ethyl) phosphate (TBEP) and Decabromodiphenyl ether (BDE 209) contributed the highest among PFRs and BFRs with median levels of 5990 and 940 ng/g of dust, respectively. The estimated daily exposure in the worst case scenario (23,700 ng/kg bw/day) for Saudi children was above the reference dose (20,000 ng/kg bw/day) for DEHP, and the hazardous index (HI) was also >1. The long-term carcinogenic risk was above the 1 × 10-5, indicating a risk to the health of Saudi young children from getting exposed to DEHP from indoor dust. This study draws attention to the increased indoor pollution during the lockdown period when all of the daily activities by adults and children were performed indoors, which negatively impacted human health, as suggested by the calculated risk. However, the current study has limitations and warrants more monitoring studies from different parts of the world to understand the phenomenon. At the same time, this study also highlights another side of COVID-19 related to our lives.


Subject(s)
Air Pollution, Indoor , COVID-19 , Diethylhexyl Phthalate , Flame Retardants , Child , Adult , Humans , Child, Preschool , Flame Retardants/analysis , Dust , Organophosphates/analysis , COVID-19/epidemiology , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Communicable Disease Control , Halogenated Diphenyl Ethers/analysis , Organophosphorus Compounds/analysis , Phosphates
3.
J Environ Manage ; 321: 115998, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1996339

ABSTRACT

Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.


Subject(s)
COVID-19 , Flame Retardants , Hydrocarbons, Brominated , Nanostructures , Environmental Monitoring , Flame Retardants/analysis , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/analysis , Humans , Hydrocarbons, Brominated/analysis , Hydrocarbons, Brominated/toxicity , Pandemics , Plastics , Water
4.
Environ Sci Process Impacts ; 24(1): 17-31, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1541261

ABSTRACT

Microplastics (MPs) are a group of emerging contaminants that have attracted increasing scientific and societal attention over the past decade due to their ubiquitous detection in all environmental compartments. So far, most studies on MPs focus on characterizing their occurrence, fate, and impact in the aquatic environment. Therefore, very little is known about the magnitude, patterns, and associated risks of human exposure to MPs, particularly indoors. This is a significant research gap given that people spend most of their time (up to 90%) indoors, which is exacerbated over the past year by COVID-19 lockdown measures. Critical evaluation of the existing literature revealed the presence of MPs at higher concentrations in indoor air and dust (from homes and offices) compared to outdoors. This was attributed to several factors including: indoor MPs sources (e.g. furniture, textiles), increased deposition of atmospheric MPs indoors, and less atmospheric mixing and dilution compared to outdoor air. Current understanding is that indoor human exposure to MPs occurs via a combination of inhalation, ingestion, and dermal contact. Dietary intake was considered the major pathway of human exposure to MPs until recent studies revealed potential high exposure via inhalation. Moreover, exposure via inadvertent dust ingestion and dermal contact cannot be neglected, particularly for young children. This is alarming due to the potential toxic implications of MPs exposure. Early toxicological evidence indicates that small MPs (<20 µm) can cause oxidative stress and inflammation, while particles <5 µm can be engulfed by cells and translocated to accumulate in different organs. Also, there is increasing concern over potential leaching of toxic chemicals used as plastic additives (e.g. plasticizers and flame retardants) upon exposure to MPs due to their large surface area. However, MPs exposure and risk assessment in humans is still in its infancy and more research is necessary to provide the knowledge base required for regulations to protect human health and environment against MPs.


Subject(s)
Air Pollution, Indoor , COVID-19 , Flame Retardants , Air Pollution, Indoor/analysis , Child, Preschool , Communicable Disease Control , Dust/analysis , Environmental Exposure/analysis , Environmental Monitoring , Flame Retardants/analysis , Humans , Microplastics , Plastics , SARS-CoV-2
5.
Environ Int ; 154: 106654, 2021 09.
Article in English | MEDLINE | ID: covidwho-1233419

ABSTRACT

For the first time, organophosphate ester (OPE) content was studied in different types of surgical, self-filtering (KN95, FFP2, and FFP3) and reusable face masks used for COVID-19 prevention. OPEs were detected in all mask samples, although in highly variable amounts which ranged from 0.02 to a maximum of 27.7 µg/mask, with the highest mean concentrations obtained for KN95 masks (11.6 µg/mask) and the lowest for surgical masks (0.24 µg/mask). Twelve out of 16 tested analytes were detected, with TEP, TPHP, TNBP, TEHP and TClPP being the most common OPEs as well as present at the highest concentrations. The non-carcinogenic and carcinogenic risks of OPE inhalation were calculated as being always several orders of magnitude lower than threshold levels, indicating that the use of face masks is safe with regard to OPE contamination. However, given the wide range of OPEs observed in different masks, it can be concluded that some masks (e.g. reusable) are less OPE-contaminated than others (e.g. KN95). With regard to environmental pollution, the disposal of billions of face masks is adding to the already substantial levels of microplastics and associated toxic additives worldwide, an impact that is lessened by use of reusable masks, which also have the lowest economic cost per user. However, in situations of relatively high risk of viral inhalation, such as poorly ventilated indoor public spaces, we recommend the use of FFP2 masks.


Subject(s)
COVID-19 , Flame Retardants , Environmental Exposure/analysis , Environmental Monitoring , Esters , Flame Retardants/analysis , Humans , Masks , Organophosphates , Plastics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL